Multiparameter Deformation Quantization of Coadjoint Orbits Tuned to the Unitary Dual

Syed Hasibul Hassan Chowdhury

Professor, Department of Mathematics and Natural Sciences, BRAC University

đź“… July 03, 2025

Syed Hasibul Hassan Chowdhury

Abstract

We develop a unified geometric framework for formal deformation quantization of coadjoint orbits of a Lie group $ G $ with Lie algebra $ \mathfrak{g} $, in which the \emph{internal} deformation parameters themselves range over the unitary dual $ \widehat{G} $. For each coadjoint orbit $ \mathcal{O}_{\lambda_0} \subset \mathfrak{g}^* $, the dual vector space of the Lie algebra $ \mathfrak{g} $, one constructs a Fedosov-type flat connection on the analogue of the single-parameter Weyl algebra bundle

\[D = \nabla - \delta + \sum_{I=1}^N \frac{1}{\lambda_I} \operatorname{ad}(r_I)\]

where $ N = \dim G - \dim \mathcal{O}_{\lambda_0}$

and the formal variables $ \lambda = (\lambda_1, \dots, \lambda_N) \in \widehat{G} $ label transverse directions to the orbit. We call the underlying bundle a $ \mathfrak{g}[[\lambda]] $-bundle. Imposing holonomy quantization on the compactified parameter torus forces $ \lambda $ to lie in the discrete set of actual unitary parameters, so that the resulting star product algebra $ C^\infty(\mathcal{O}_{\lambda_0})[[\lambda ]], *\lambda $ specializes—without additional projection—to the matrix algebra of the corresponding genuine irreducible representation of $ G $.

At the same time, the Fedosov twist \(\mathcal{F} = \exp\left( -\sum_{I=1}^N \frac{1}{\lambda_I} \operatorname{ad}(r_I) \right)\) deforms the coproduct of $ U(\mathfrak{g}) $ into a multiparameter quantum group $ U_\lambda(\mathfrak{g}) $, and one checks that $ C^\infty(\mathcal{O}_{\lambda_0})[ [ \lambda ] ]$

becomes a natural $ U_\lambda(\mathfrak{g}) $-module algebra. Our construction thus marries three pillars—symplectic geometry, Hopf-algebra deformation, and exact matching to the group’s unirreps—into a single, coherent deformation-quantization picture.

Download Slides